🧬 Chapter 5: Molecular Basis of Inheritance – Class 12 --summary Notes | NCERT + NEET Focus

Rashmi Mishra
0

 


🌸 Chapter 5

 Molecular Basis Of Inheritance 

(SUMMARY NOTES )

🌟 1. DNA — The Genetic Material

🔹 Discovery & Structure

  • DNA (Deoxyribonucleic Acid) → carries hereditary information.
  • Discovered by: Friedrich Miescher (1869) — named “Nuclein”.
  • Proved as genetic material by: Avery, MacLeod & McCarty (1944) and Hershey & Chase (1952).

🔹 Structure (Watson & Crick Model, 1953)

  • Double helix of two antiparallel polynucleotide chains.
  • Backbone: Sugar (deoxyribose) + phosphate.
  • Bases: Adenine (A), Thymine (T), Cytosine (C), Guanine (G).
  • Base pairing rule:
    • A ↔ T (2 H-bonds)
    • G ↔ C (3 H-bonds)
  • Helix dimensions:
    • One turn = 3.4 nm (10 base pairs)
    • Distance between two bases = 0.34 nm

🧩 Chargaff’s Rule: [A] = [T], [G] = [C]; purines = pyrimidines.


🧫 2. Experimental Proof of DNA as Genetic Material

Griffith’s Experiment (1928):

  • Streptococcus pneumoniae → S (smooth, virulent) and R (rough, non-virulent).
  • Heat-killed S + live R → dead mouse.
    👉 Transforming principle transferred genetic material.

Avery, MacLeod & McCarty (1944):

  • DNA from S strain transformed R → S.
  • DNA-destroying enzymes (DNase) prevented transformation → DNA = transforming principle.

Hershey–Chase Experiment (1952):

  • Used bacteriophage labeled with:
    • ³²P → DNA
    • ³⁵S → Protein
  • Only ³²P entered bacterial cell → proved DNA is the genetic material.

🧬 3. RNA — The Messenger Molecule

  • Ribonucleic Acid (RNA) — single-stranded.
  • Sugar: Ribose
  • Bases: A, U (Uracil), G, C
  • Types:
    • mRNA (messenger RNA) — carries code.
    • tRNA (transfer RNA) — brings amino acids.
    • rRNA (ribosomal RNA) — forms ribosome structure.

⚙️ 4. DNA Packaging in Prokaryotes & Eukaryotes

Prokaryotes:

  • DNA — negatively charged, circular, supercoiled with proteins.

Eukaryotes:

  • DNA + histone proteins = nucleosome (bead-on-string structure).
  • Nucleosome → solenoid (30 nm fibre) → chromatin → chromosome.
  • Histones: H1, H2A, H2B, H3, H4 (octamer core).

🧩 5. DNA Replication (Semi-Conservative Model)

Proposed by: Watson & Crick (1953)
Experiment by: Meselson and Stahl (1958) using ¹⁵N and ¹⁴N.

Steps:

1.   Unwinding: Helicase breaks H-bonds.

2.   Primer binding: RNA primers added.

3.   Elongation: DNA polymerase adds nucleotides (5′ → 3′).

4.   Leading & Lagging strands:

o   Leading: continuous

o   Lagging: Okazaki fragments

5.   Ligation: DNA ligase joins fragments.

🧠 Result: Each new DNA has one parental and one new strand.


🔤 6. Transcription (DNA → RNA)

Enzyme: RNA polymerase

Stages:

1.   Initiation: Promoter signals start.

2.   Elongation: Complementary RNA synthesis.

3.   Termination: Terminator signals stop.

In Eukaryotes:

  • RNA polymerase I → rRNA
  • RNA polymerase II → mRNA
  • RNA polymerase III → tRNA
  • Post-transcriptional modifications:
    • Capping (5′ end), Tailing (3′ end), Splicing (removal of introns).

💬 7. Genetic Code

  • Triplet code: 3 bases → 1 amino acid.
  • Start codon: AUG (Methionine)
  • Stop codons: UAA, UAG, UGA
  • Degenerate: Multiple codons for one amino acid.
  • Universal: Same in all organisms.

🔄 8. Translation (mRNA → Protein)

Components:

  • mRNA — template
  • tRNA — adaptor (anticodon matches codon)
  • Ribosomes — site of synthesis

Steps:

1.   Initiation → AUG codon starts synthesis.

2.   Elongation → Peptide bond formation.

3.   Termination → Stop codon ends synthesis.

🧠 Enzyme: Peptidyl transferase (rRNA enzyme).


🧬 9. Regulation of Gene Expression

Operon Concept (Jacob & Monod – 1961):

Example: Lac Operon in E. coli

  • LacZ: β-galactosidase
  • LacY: Permease
  • LacA: Transacetylase
  • Operator: Switches transcription ON/OFF
  • Repressor: Inhibits transcription when lactose absent
  • Inducer (lactose): Inactivates repressor → genes transcribed.

🧩 Keywords: Promoter, Operator, Regulator, Structural Genes.


🧫 10. Human Genome Project (HGP)

  • Started: 1990 | Completed: 2003
  • Goal: Sequence entire human DNA (~3 × 10⁹ base pairs).
  • Results:
    • Humans have ~20,000–25,000 genes.
    • <2% DNA codes for proteins.
    • Repetitive sequences — major part of non-coding DNA.

🧬 11. DNA Fingerprinting

Principle:

Based on polymorphism in DNA sequences (VNTRs — Variable Number Tandem Repeats).

Technique by: Alec Jeffreys (1985)

Steps:

1.   DNA extraction

2.   Restriction digestion

3.   Gel electrophoresis

4.   Hybridization with radioactive probes

5.   Autoradiography

Uses:

  • Forensics, paternity disputes, genetic disorders.

📈 12. Key NCERT Diagrams to Practice

1.   Watson and Crick DNA Double Helix

2.   DNA Packaging in Eukaryote

3.   Semi-Conservative DNA Replication (Meselson & Stahl Experiment)

4.   Lac Operon Model

5.   Transcription & Translation

6.   Human Genome Project Summary Chart


🧠 Quick Revision Table

Concept

Key Points

Enzyme/Scientist

DNA Replication

Semi-conservative

Meselson & Stahl

Transcription

DNA → RNA

RNA polymerase

Translation

RNA → Protein

Ribosome

Genetic Code

Triplet, universal

Nirenberg & Khorana

Lac Operon

Gene regulation

Jacob & Monod

HGP

Genome sequencing

International project

DNA Fingerprinting

VNTRs

Alec Jeffreys


📖 Important Definitions (as per NCERT Keywords)

  • Gene: Functional unit of inheritance coding for a polypeptide.
  • Codon: Triplet of bases on mRNA coding for an amino acid.
  • Genome: Total genetic material of an organism.
  • Mutation: Sudden heritable change in DNA sequence.
  • Recombinant DNA: Artificially joined DNA from different sources.
  • Exons: Coding sequences in eukaryotic genes.
  • Introns: Non-coding sequences removed during splicing.

✨ Super Quick NEET + Board Tips

✅ Focus Diagrams: DNA structure, Lac operon, Transcription-Translation
✅ Memorize Enzymes: Helicase, Polymerase, Ligase, Peptidyl Transferase
✅ Revise Scientists: Griffith, Avery, Hershey–Chase, Meselson–Stahl, Nirenberg, Jacob & Monod
✅ Read NCERT Lines — keywords like transforming principle, semiconservative, inducible operon


Post a Comment

0Comments

Post a Comment (0)